Klassifikation des Arbeitsfortschritts
4,90 €
Auf Lager
Artikelnummer
03654_2017_11_04
Support-Vector-Machine-Ansatz für intelligente Arbeitsplätze
Steigende Anforderungen an die Qualität von zum Teil manuell gefertigten Produkten führen dazu, dass Handarbeitsplätze mit Assistenzsystemen für die Unterstützung der am Arbeitsplatz arbeitenden Mitarbeiterinnen und Mitarbeiter ausgestattet werden. Der Beitrag beschreibt einen neuen Ansatz, um mittels Verfahren des maschinellen Lernens die Objekterkennung sowie die Transitionen eines, den Arbeitsprozess repräsentierenden Zustandsautomaten eines solchen Systems einzulernen. Hierfür werden nach einer Vorverarbeitung Daten aus einer Tiefenkamera in drei Stufen durch Support Vector Machines (SVM) klassifiziert und das Ergebnis mit dem Zustandsautomaten verknüpft. Das Konzept wird an einem industriellen Montageprozess überschaubarer Komplexität evaluiert; es zeigt gute Ergebnisse hinsichtlich der Robustheit gegenüber Fehlern bei der Objektklassifikation.
Autoren | Sascha Niedersteiner, Jonas Lang, Clemens Pohlt, Thomas Schlegl |
---|---|
Erscheinungsdatum | 04.12.2017 |
Format | |
Verlag | DIV Deutscher Industrieverlag GmbH |
Seitenzahl | 9 |
Titel | Klassifikation des Arbeitsfortschritts |
Untertitel | Support-Vector-Machine-Ansatz für intelligente Arbeitsplätze |
Beschreibung | Steigende Anforderungen an die Qualität von zum Teil manuell gefertigten Produkten führen dazu, dass Handarbeitsplätze mit Assistenzsystemen für die Unterstützung der am Arbeitsplatz arbeitenden Mitarbeiterinnen und Mitarbeiter ausgestattet werden. Der Beitrag beschreibt einen neuen Ansatz, um mittels Verfahren des maschinellen Lernens die Objekterkennung sowie die Transitionen eines, den Arbeitsprozess repräsentierenden Zustandsautomaten eines solchen Systems einzulernen. Hierfür werden nach einer Vorverarbeitung Daten aus einer Tiefenkamera in drei Stufen durch Support Vector Machines (SVM) klassifiziert und das Ergebnis mit dem Zustandsautomaten verknüpft. Das Konzept wird an einem industriellen Montageprozess überschaubarer Komplexität evaluiert; es zeigt gute Ergebnisse hinsichtlich der Robustheit gegenüber Fehlern bei der Objektklassifikation. |
Eigene Bewertung schreiben